Ambulance Safety – RU Safe in Your Rig??

Nadine Levick, MD MPH
Executive Director, Objective Safety LLC
Faculty, Department of Emergency Medicine
New York Downtown Hospital
Cornell University, New York

Outline
- Look at the data on EMS transport safety
- Demonstrate what happens during an ambulance crash
- Review of national guidelines and standards
- Address what needs to be done to enhance safety in EMS transport

USA EMS
- EMS Systems - >15,000
- Personnel - ~1 million (~30% F/T professional & 70% volunteer)
- Vehicles - ~50,000 (Type I, Type II, Type III, Freightliners, motorcycles)
- Transports - ~30 million patients (to Emergency Depts ~ 50%, < 1/3 emergent)
- Cost - ~55 Billion annually
- Safety Oversight - ? Disparate

Key Issues
- Mythology
 -that Emergency Medical Services personnel are safe
- Injury Hazards
 - Biohazard
 - Chemical/Radiation
 - Physical/Mechanical trauma – THE BIG PROBLEM
- Motor Vehicle Crashes are the highest cause of death at work – EMS has > 2X the mean national rate
- An R & D and Regulatory Gap
 - Occupational Health and Safety
 - Inadequate guidelines and methods
 - Automotive Safety
 - Inadequate guidelines and methods

EMS Safety IS Complex AND Multidisciplinary

Ambulance Safety Research: A New Field

Safety oversight of what and by whom
- Vehicle Safety
- Vehicle Design
- Safety Equipment Design
- Vehicle and Safety Equipment Testing and Standard development
- Safety policies

So you are EMS personnel...
- What’s going to kill you?
- What’s going to injure you?
Predictable risks

- More often at intersections, & with another vehicle (p < 0.001)*
- Most serious & fatal injuries occurred in rear (OR 2.7 vs front) & to improperly restrained occupants (OR 2.5 vs restrained)**
- 82% of fatally injured EMS rear occupants unrestrained**
- More likely to crash at an intersection with traffic lights (37% vs 18% p=0.001) & more people & injuries/crash than similar sized vehicles##

EMS Fatalities

- 12.7 fatalities/100,000 EMS workers
- Greater than 2 X the national average (5.0 fatalities/100,000)
- Similar to Police (14.2/100,000) and Fire Fighters (16.3/100,000)

and what is killing EMS?

EMS personnel fatalities*

- 74% transportation related
 - 1/5 of ground transport fatalities were struck by moving vehicles
 - 11% were cardiovascular
 - 9% were homicide
 - 4% needle sticks, electrocution, drowning and other

* MAGUIRE, HUNTING, SMITH & LEVICK, OCCUPATIONAL FATALITIES IN EMERGENCY MEDICAL SERVICES: A HIDDEN CRISIS, ANNUALS OF EMERGENCY MEDICINE, Dec 2002
** MAGUIRE, HUNTING, SMITH & LEVICK, OCCUPATIONAL FATALITIES IN EMERGENCY MEDICAL SERVICES: A HIDDEN CRISIS, ANNUALS OF EMERGENCY MEDICINE, Dec 2002
*** MAGUIRE, HUNTING, SMITH & LEVICK, OCCUPATIONAL FATALITIES IN EMERGENCY MEDICAL SERVICES: A HIDDEN CRISIS, ANNUALS OF EMERGENCY MEDICINE, Dec 2002
NIOSH, 2003
NHTSA, 49 CFR Parts 571, 572 & 589 Docket no. 92-28; notice 7

A word about occupational transportation fatalities

Higher than the injury rate for any private industry published by DOL
34.6 injuries/100 full-time workers per year
1.5 x that of fire fighters
5.8 x that of health services personnel
7 x the national average

EMS Injuries*

Goals

- Standards for safety
- Policy based on Science
- Databases to demonstrate outcome

Is there an acceptable rate of morbidity and mortality for pre-hospital transport systems??

This is not acceptable

- ~ 3,000 crashes a year
- ~ One fatality each week
- ~ 23 pedestrians or occupants of other car
- Approximately 4 child fatalities per year
- ~10 serious injuries each day
- Cost estimates > $500 million annually
- USA Crash fatality rate/capita 35x higher than in Australia

* MAGUIRE, HUNTING, SMITH & LEVICK, OCCUPATIONAL FATALITIES IN EMERGENCY MEDICAL SERVICES: A HIDDEN CRISIS, ANNUALS OF EMERGENCY MEDICINE, Dec 2002
Concerns

- Consequences can be predictable & likely preventable
- Costs of these adverse events are high in loss of life, financial burden and negative impact on delivery of EMS care
- Other high speed vehicles (eg. racing cars) have a different safety paradigm
- Design of interventions to mitigate injury is predicated on a valid testing model
- Complex both engineering and public health issues

Background: Problems

- No reporting system or database specifically for identifying ambulance crash related injury
- Rear passenger compartment, > 60cm behind driver - exempt from Federal Motor Vehicle Safety Standards (FMVSS)

USA Ambulances: FMVSS Exempt

- USA Ambulances: FMVSS Exempt

The tragic toll?

- 2 Fatalities – Medic and the patient’s mother
- 3 injuries – 1 critical requiring an airlift

But what is the hidden and real toll?

What do ambulance crashes really cost?

- Loss of life and injury
- Negative impact on EMS system
- Collisions are the largest liability cost and exceeds malpractice or negligence
- Besides the direct financial costs of replacing a damaged ambulance and equipment, there are additional hidden costs incurred:
 - Investigating the ambulance collision
 - Litigation/settlement/lawsuit
 - Medical/Disability costs of injured EMTs
 - Hiring of new employees to replace injured personnel
 - Retraining and psychological counseling of personnel involved and others
 - Increased insurance rates

This is about you and your safety

- What safety practices do you use??
 - Seat belts ?
 - EVOC training ?
 - Equipment lock down ?
 - Helmets ?
 - “Black Box” technology ?
 - Tiered dispatch ?

Some simple and available solutions out there now

- Intersection Policy
- PPE
- Black boxes
We should use the best safety practices demonstrated.

Firstly!
- An accident?
 - or a predictable and preventable event

EMS Research/Data Vacuum
- total no. of ambulances
- total no. of medics
- total no. of runs (per age & severity)
- total pt. miles (per age & severity)
- true crash fatality rate per mile
- crash injury rate
- adverse events

What do we know now??
- Intersection crashes are the most lethal
- There are documented hazards, some which can be avoided
- Occupant and equipment restraint with standard belts is effective. (Over the shoulder harnesses for patients should be used, with the gurney in the upright position where medically feasible)
- Some vehicle design features are beneficial - automotive-grade padding in head strike areas, seats that can slide toward the patient
- Electronic Driver monitoring/feedback systems appear to be highly effective
- Head protection??

Launched today...

Anecdotal crash log

This is happening out there NOW...

Gregg Theunes Appeal to his Senator, December 29, 2005

Balance of concerns and risk during transport
- Response and transport time
- Clinical care provision
- Occupant safety/protection
- Public Safety
"Are our policies killing people?"

- 1991-2000, 302,969 Emergency vehicles were involved in MVCs - 1,565 involving fatalities
- In PA 1997-2001, ambulances were more likely than similar sized vehicles to be involved in:
 - 4 way intersection crashes (43% vs 23%, p=0.001)
 - Collisions at traffic signals (47% vs 18%, p=0.001)
 - MVCs with more people injured (15% vs 87%, p=0.001)

*Comparison of EMS involving Ambulances with those of similar sized vehicles – Adam Ray, Douglas Reine, PEC Dec 2005 9:412-415

So... The real world for an EMS vehicle approaching a red light

- You think they heard you...
- You know they must have seen you...
- And maybe they did...
- But...
- There is NO way humanly possible that they could stop.....

The real world
Intersection passenger car stopping distance* at 40 mph dry and wet

Perception + Reaction time + Vehicle braking time (dry)
- 40 mph
 - Stopped at 176 feet
Perception + Reaction time + Vehicle braking time (wet)
- 40 mph
 - Stopped at 220 feet

*Stopping distance:
 Perception time + Reaction time + Vehicle braking time (varies with age, skill, agility, road surface type, speed, etc.)

Protective devices/concepts

- Vehicle crashworthiness
- Seat/seat belt systems
- Equipment lock downs
- Padding
- Head protection

To prevent a crash

- Driver feedback
- Driver monitoring
- Driver training
- Vehicle technologies
- Tiered dispatch
- Appropriate policies

Intelligent Transport Safety Systems

Guidelines – standards

- Transport safety
- Practice protocols
- Occupational Health and Safety
Technical Research
- Based on reliable and real world field data
- Cost effective and practical
- Involve low cost development – University engineering and transportation research centers

Concern
- What is currently occurring as routine practice in EMS is ignoring that science, and worse there are initiatives that are automotive safety in their entirety that are occurring outside of that industry and those principles.

The ‘workplace’ IS a vehicle
- Providers often in vulnerable positions during transport:
 - Bench seat
 - Captain’s chair
 - Standing or kneeling

But what about head protection?
- A simple, immediate and inexpensive adjunct – a protective device –
 - To protect occupants from hazardous interiors
 - As vehicle crashworthiness design advances
 - As driver training advances
 - For when equipment becomes unsecured
 - As EMS Safety Standards are developed, for both EMS vehicles and EMS occupational safety

Role of a head protective device
- A simple, immediate and inexpensive adjunct – a protective device –
 - To protect occupants from hazardous interiors
 - As vehicle crashworthiness design advances
 - As driver training advances
 - For when equipment becomes unsecured
 - As EMS Safety Standards are developed, for both EMS vehicles and EMS occupational safety

Preliminary Study: Attitudes to Head Protection in EMS
- Would you consider wearing a helmet PRE- PRESENTATION
 - Yes: 16%
 - No: 84%
- Would you consider wearing a helmet POST
 - Yes: 82%
 - No: 18%

n = 32 n = 32

Key Helmet Features

Real world
- We do know from large samples that the most common reason for medics to get up is to get to the radio
- We do know that CPR enroute to the hospital is a very rare event – too small in frequency to even evaluate using national data bases, and often with non survival out come when it does occur
New EMS Helmets for 2006

The difference having data makes?

Benefit of Safety

- Any cost of addressing these issues is dwarfed in contrast to the huge burden of not doing so - in financial costs let alone the personal, societal, ethical and litigation costs.

Concern

- What is currently occurring as routine practice in EMS is ignoring that science, and worse there are initiatives that are automotive safety in their entirety that are occurring outside of that industry and those principles.

However, we know that intersection crashes are the most frequent & lethal

Crash Prevention

- EVOC
- Tiered Dispatch
- The “Black Box”
- Intelligent vehicle design
- Appropriate policy

The “Black Box”

Driver behavior monitoring and feedback device

Purpose of ‘Black box’ Program

- Enhance Safety
- Improve Driver Performance
- Save Maintenance Dollars
- Aid Accident / Incident Investigation
Video Demonstration

- Log on procedure
- Hard cornering
 - Freeway entrance ramp – tighten turn radius
- Over-speed
 - Shortened warning period to high overspeed
 - Low overspeed during deceleration
- Hard stop
 - Freeway exit – hard, but not a panic stop

Demonstrated Effectiveness

Unit 302 Accident

Other monitoring devices

- Primarily to record events during and immediately preceding a crash
- Give no driver crash prevention feedback
- Administratively burdensome
- Intrusive
- Not demonstrated to be as effective in improving vehicle maintenance costs or as effective in modifying driver behavior long term

The jury is out on

- Opticon
- Simulators

What's missing

- What data is collected nationally
- What oversight is there
- Which organizations would determine policy

Global EMS Vehicle Safety Standards v Specifications and Guidelines

- EMS Safety and Performance Standards
 - Australia & New Zealand 4535
 - Common European Community (CEN) EN1789
 - Non EMS Specific USA Standards
 - [Aviation - FAA/CAA/JAA]
 - Z15 – Fleet vehicles safety management
- USA EMS Specification & Guidelines
- Purchase Specification: KMK & NTEA – AMD
- Guidelines: EMSC Dos and Don'ts
- CAAS and CAMTS

Australia & New Zealand Ambulance restraint standard AS/NZS 4535:1999

- “Restraint systems shall apply to all equipment and people carried in an ambulance…”
- Dynamic Testing - 50th & 95th percentile manikins
- 24G in Forward and Rearward
- 10G in Transverse

- Medical vehicles and their equipment – Road Ambulances
- “Without exception, all persons, medical devices/equipment, and objects normally carried on the road ambulance shall be maintained to prevent them from becoming a projectile when subject to a force…”
- 50th percentile manikins - 10 G in Forward, Rearward, Transverse, & Vertical directions
- Certified by Notified Body and Ambulance Mfg.
Commission on Accreditation of Medical Transport Systems - CAMTS Accreditation Standards
2006 revision underway

Commission on Accreditation of Ambulance Services - CAAS

USA ambulance purchase specifications
- Static Pull test
- 2200 Lbs. (8G's) in Longitudinal and Lateral
- No dynamic test
- No definition to manikin mass
- No restraint for equipment
- Voluntary

American National Standard
ANSI/ASSE Z15.1-2006
Safe Practices for Fleet Motor Vehicle Operations

Scope of the Z15.1 Standard
- For the safe operation of motor vehicles owned or operated by organizations, including:
 - Definitions
 - Management Leadership Administration
 - Operational Environment
 - Driver Considerations
 - Vehicle Considerations
 - Incident Reporting and Analysis
- These practices are designed for use by those having the responsibility for the administration and operation of motor vehicles as a part of organizational operations.

What Z15 encompasses
- Safety Program
- Safety Policy
- Responsibilities and Accountabilities
- Driver Recruitment, Selection and Assessment
- Organizational Safety Rules
- Orientation and Training
- Reporting Rates and Major Incidents to Executives
- Oversight

Z15 Incident Rates
- Incident rate based on number of vehicles operated:
 Incident rate = Number of incidents / Number of vehicles
- Injury incident rate based on vehicle mileage:
 Injury incident rate = Number of incidents with injury / Vehicle mileage
- Incident rates based on service activity:
 Number of incidents per 10,000 transports
- Vehicle injury rates based on work hours:
 Vehicle incidents per 200,000 hours

Goals
- Standards for safety
- Policy based on Science
- Databases to demonstrate outcome

Air EMS is a role model for safety initiatives and focus
Peds Transports

- One in ten (~6 million) ambulance transports involves a child
- Only ~1.8 million are children <5 yrs
- Ambulances ≠ standard passenger vehicles
- Pediatric patients in ambulances ≠ children in passenger cars
- Standard automotive safety practices cannot be applied directly to ambulances

Kids are not little adults

- Behavior
- Communication skills
- Fear
- Development
- Size and shape
- Biomechanics

In a collision at 35 mph (60 km/hr), an unrestrained 15 kg child is exposed to the same forces* as in falling from a 4th story window:

*550 kgs force in 0.03 sec

Crash Occupant Protection

- collision speed
- direction of impact
- vehicle stiffness and mass
- compartment size & projectiles
- passive protection
- head protection
- occupant restraint/belts

Crash Prevention

- EVOC
- Tiered Dispatch
- The ‘Black Box’
- Intelligent vehicle design
- Appropriate policy

Transport Safety Guidelines

EMSC/NHTSA fact sheet

Do's

- DO drive cautiously at safe speeds observing traffic laws.
- DO tightly secure all monitoring devices and other equipment
- DO ensure available restraint systems are used by EMTs and other occupants, including the patient.
- DO transport children who are not patients, properly restrained, in an alternate passenger vehicle, whenever possible.
- DO encourage utilization of the DOT NHTSA Emergency Vehicle Operating Course (EVOC), National Standard Curriculum.

Don'ts

- DO NOT drive at unsafe high speeds with rapid acceleration, decelerations, and turns.
- DO NOT leave monitoring devices and other equipment unsecured in moving EMS vehicles.
- DO NOT allow parents, caregivers, EMTs or other passengers to be unrestrained during transport.
- DO NOT have the child/infant held in the parent, caregiver, or EMT’s arms or lap during transport.
- DO NOT allow emergency vehicles to be operated by persons who have not completed the DOT EVOC or equivalent.

Deer me! … or is that duck!!
Safety Management
- A Safety Culture
- Protective Policies
- Protective Devices
 - In the event of a crash
 - To prevent a crash
- Continuous Education and Evaluation

Creating a Safety Culture
within a company must start with upper management’s commitment to safety
- Awareness
- Training
- Incentive

USA EMS Risk/Hazards
- Predictable risks
- Serious occupational hazard
- Predictable fatal injuries

Multidisciplinary collaboration and the way forward
- Development of interdisciplinary teams
 - Healthcare professionals
 - Safety engineering expertise
 - Regulatory bodies
 - Manufacturers
- Safer practices save lives, time and money

Dynamic Safety Testing
- requires sophisticated, expensive equipment
- measurably demonstrates forces generated during collision
- accepted international standard for vehicle restraint systems

Dynamic Sled Testing of Ambulance Pediatric Restraints

If we know this – and its published.

Why do we do this?

Full Vehicle Crash Tests - 2000
Test 1 - Right side impact
Test 2 - Frontal
Safety Enhancements Being Implemented

- EVOC
- Tiered dispatch
- Monitoring & Feedback devices
- Helmets
- Optimized ambulance vehicle design
- New Standards

USA design initiatives

New Swedish vehicles

New Australian vehicles
High speed crash, rolled and the occupants (patient and medics) had only minor scratches

Newborn Emergency Transport Service (Victoria)

Other successful models

So....
- Which vehicle do you want to be in?
- Which vehicle is the best for efficient, and effective patient care?
- Which vehicle provides optimal risk management?
- What is the optimal fleet mix?

What we know:
- Secure providers and other seated occupants with existing restraints
- Secure patient with over the shoulder harness
- Secure equipment
- Use driver and vehicle monitoring and feedback technology
- Use tiered dispatch

Current and Future Research
- Epidemiology
- Ergonomic hazards
- Bio/Chem/Radiation hazard
- PPE & head protection
- Transport
 - Vehicle/Occupant automotive testing
 - Vehicle design innovation
 - Driver behaviour (Real time and simulated)
 - Intelligent Transportation Systems
- Operations tracking
- Data systems/reporting systems
- Enhanced practice policies

EMS Transport Safety
- Policy that reflects SCIENCE
Important Principles!

1. Ambulances are NOT standard passenger vehicles

Important Principles!

2. Design, performance and practice policy should be based on properly conducted science

Very Important Principle

3. Ambulance transport safety is part of a SYSTEM, the overall balance of risk involves the safety of all occupants and the public

Very Important Principles!

1. A culture of safety
2. Drive cautiously
3. Wear your belts & restrain all occupants
4. Secure all equipment
5. Integrate scientific data into your policies and procedures

- Unrestrained occupants and equipment are a potential injury risk to all occupants

small changes can make a BIG DIFFERENCE

PREPARE – TEACH – REACH – RESPOND
- Look at your own safety record
- Teach safety and hazard awareness
- Reach out with safety information to all your EMS providers
- Respond with the best safety practices

PREDICTABLE PREVENTABLE and NO ACCIDENT

Conclusion

- Major advances in EMS safety research, infrastructure and practice over the past 5 years
- New technologies for vehicle design, occupant PPE and equipment restraint and driver performance are now available
- Development of substantive EMS safety standards is a necessity and a reality
- Enhanced cross-disciplinary collaboration in development of safety initiatives now exist
- EMS is still way behind the state of the art in vehicle safety and occupant protection

And….

- It is no longer acceptable for EMS to be functioning outside of automotive safety and PPE safety standards for prevention of and protection of EMS providers and the public from injury and death

Thank you! Any Questions??:

http://www.objectivesafety.net