Outline

- Look at the data on EMS transport safety
- Demonstrate what happens during an ambulance crash
- Review of national guidelines and standards
- Address what needs to be done to enhance safety in EMS transport

Key Issues

- Mythology
 - Emergency Medical Service personnel are safe
- Injury Hazards
 - Radiation
 - Chemical/Radiation
 - Physical/Mechanical trauma – THE BIG PROBLEM
- Motor Vehicle Crashes are the highest cause of death at work – EMS has > 2X the mean national rate
- An R & D and Regulatory Gap
 - Occupational Health and Safety
 - workplace in a vehicle – exposure data are scant
 - Automotive Safety
 - a vehicle is the workplace – 'exempt' from automotive research and regulation
- Vehicle Safety
 - Vehicle Design
 - Safety Equipment Design
 - Vehicle and Safety Equipment Testing and Standard development
 - Safety policies

USA EMS

- EMS Systems - >15,000
- Personnel - ~1 million
 (~30% F/T professional & 70% volunteer)
- Vehicles - ~50,000
 (Type I, Type II, Type III, Freightliners, ?motorcycles)
- Transports - ~50 million
 (to Emergency Depts ~ 50%, < 1/3 emergent)
- Cost - ~$5 Billion annually
- Safety Oversight - ? Disparate

Safety oversight of what and by whom

- Vehicle Safety
- Vehicle Design
- Safety Equipment Design
- Vehicle and Safety Equipment Testing and Standard development
- Safety policies

the EMS process

- communications/dispatch
- the patient
- restraining device/seat
- transporting device/gurney
- paramedics/transport nurses, doctors & family
- patient monitoring equipment
- clinical care & interventions
- protective equipment
- the vehicle
- the driving/driver skill
- other road users
- the road

http://www.objectivesafety.net
EMS Safety IS Complex AND Multidisciplinary

EMS Safety
- Risk Management
- EMS Policy
- Public Safety
- Regulations and Standards
- Fleet Safety Programs
- Ergonomic Research
- Automotive Safety
- Epidemiological Data Collection

Approach to hazard analysis and optimizing safety
- Unique nature of EMS, it bridges:
 - Public health
 - Public safety
 - Emergency medical care
 - Automotive and transportation safety
 - System safety engineering
 - Occupational health and safety
 - Risk management, liability
- It is paramount that the safety of this system be addressed with a comprehensive multidisciplinary approach.

Balance of concerns and risk during transport
- Response and transport time
- Clinical care provision
- Occupant safety/protection
- Public Safety

Benefit of Safety
- Any cost of addressing these issues is dwarfed in contrast to the huge burden of not doing so - in financial costs let alone the personal, societal, ethical and litigation costs

This is not acceptable
In the USA:
- ~ 5,000 crashes a year
- ~ One fatality each week
- ~ 2/3 pedestrians or occupants of other car
- ~10 serious injuries each day
- Cost estimates > $500 million annually
- USA crash fatality rate/capita 35x higher than in Australia

This is about you and your safety
- What safety practices do you use??
 - Seat belts?
 - EVOC training?
 - Equipment lock down?
 - Helmets?
 - “Black Box” technology?
 - Tiered dispatch?

Some simple and available solutions out there now
- Intersection Policy
- PPE
- Black boxes

We should use the best safety practices demonstrated

Ambulance Safety Research: A New Field
- Ergonomic
- Epidemiology
- Engineering

EMS Provider Fatalities

- 12.7 fatalities/100,000 EMS workers
- Greater than 2 X the national average (5.0 fatalities/100,000
- Similar to Police (14.2/100,000) and Fire Fighters (16.5/100,000)

and what is killing EMS?

EMS personnel fatalities

- 74% transportation related
 - 1/5 of ground transport fatalities were struck by moving vehicles
 - 11% were cardiovascular
 - 9% were homicide
 - 4% needle sticks, electrocution, drowning and other

So does it make sense?

- Gloves and universal precautions?...
 - ... good biohazard protection BUT aren’t going to give much protection in a ambulance crash

Predictable risks

- More often at intersections, & with another vehicle (p < 0.001)
- More serious & fatal injuries occurred in rear (OR 2.7 vs front) & to improperly restrained occupants (OR 2.5 vs restrained)
- 82% of fatally injured EMS rear occupants unrestrained
- 76% of fatal crashes EMS crashes during Emergency Use
- Serious head injury in >65% of fatal occupant injuries
- > 74% of EMT occupational fatalities are MVC related
- 82% of fatally injured EMS rear occupants unrestrained

A word about occupational transportation fatalities

EMS Injuries

- Higher than the injury rate for any private industry published by DOL
- 34.6 injuries/100 fulltime workers per year
- 1.5 x that of fire fighters
- 5.8 x that of health services personnel
- 7 x the national average

Haddon/Baker/Runyan Phase-Factor Matrix

Goals

- Standards for safety
- Policy based on Science
- Databases to demonstrate outcome

General Concerns

- Consequences can be predictable & likely preventable
- Costs of these adverse events are high in loss of life, financial burden and negative impact on delivery of EMS care
- Other high speed vehicles (eg. racing cars) have a different safety paradigm
- Design of interventions to mitigate injury is predicated on a valid testing model
- Complex both engineering and public health issues
Background: USA Problems

- No reporting system or database specifically for identifying ambulance crash related injury
- No occupational and health safety standards to protect providers from injury
- Rear passenger compartment, > 60cm behind driver - exempt from Federal Motor Vehicle Safety Standards (FMVSS)

USA Ambulances: FMVSS Exempt

What do ambulance crashes really cost?

- Loss of life and injury
- Negative impact on EMS system
- Collisions are the largest liability cost and exceeds malpractice or negligence
- Besides the direct financial costs of replacing a damaged ambulance and equipment, there are additional hidden costs incurred:
 - investigating the ambulance collision
 - litigation/settlement/lawsuit
 - medical/disability costs of injured EMTs
 - hiring of new employees to replace injured personnel
 - retraining and psychological counseling of personnel involved and others
 - increased insurance rates

"Are our policies killing people?"

- 1991-2000, 302,969 Emergency vehicles were involved in MVCs - 1,565 involving fatalities
- In PA 1997-2001, ambulances were more likely than similar sized vehicles to be involved in:
 - 4 way intersection crashes (43% vs 23%, p=0.001)
 - Collisions at traffic signals (37% vs 18%, p=0.001)
 - MVCs with more people injured (76% vs 61%, p=0.001)

So.. The real world for an EMS vehicle approaching a red light

- You think they heard you...
- You know they must have seen you...
- And maybe they did
- But...
- There is NO way humanly possible that they could stop....

This is happening out there NOW....

Gregg Theunes Appeal to his Senator, December 29, 2005

Increasing awareness ...

- EVOC
- Tiered Dispatch
- The "Black Box"
- Intelligent vehicle design
- Appropriate policy

Crash Prevention
Only two technical symposia
2001 and 2003
(next planned for 2007)

What do we know now??
- Intersection crashes are the most lethal
- There are documented hazards, some which can be avoided
- Occupant and equipment restraint with standard belts is effective. (Over the shoulder harnesses for patients should be used, with the gurney in the upright position where medically feasible)
- Some vehicle design features are beneficial - automotive grade padding in head strike areas, seats that can slide toward the patient
- Electronic Driver monitoring/feedback systems appear to be highly effective
- Head protection??

No need to reinvent the wheel...

A number of potential interventions to enhance safety have been identified:
- Safety Policy
- Safety performance standards
- Vehicle crashworthiness
- Vehicle interior ergonomics
- Personal Protective Equipment design
- Driver training and simulation
- Safety and risk awareness modification
- Risk behavior modification
- Intelligent Transportation Systems (ITS)

The ‘workplace’ IS a vehicle
- Providers often in vulnerable positions during transport:
 - Bench seat
 - Captains chair
 - Standing or kneeling

But what about head protection?

Role of a head protective device
- A simple, immediate and inexpensive adjunct – a protective device -
 - To protect occupants from hazardous interiors
 - As vehicle crashworthiness design advances
 - As driver training advances
 - For when equipment becomes unsecured
 - As EMS Safety Standards are developed, for both EMS vehicles and EMS occupational safety

Preliminary Study: Attitudes to Head Protection in EMS

<table>
<thead>
<tr>
<th>View of Ambulance interior from Rear</th>
<th>Would you consider wearing a helmet PRE- PRESENT A T ION</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 32</td>
<td>Yes: 16% No: 84%</td>
</tr>
<tr>
<td>Would you consider wearing a helmet POST</td>
<td>Yes: 82% No: 18%</td>
</tr>
<tr>
<td>n = 32</td>
<td></td>
</tr>
</tbody>
</table>

New EMS helmet prototypes for 2006-2007
Hmm...

So why is it...

- That the EMS providers:
 - Were wearing navy blue – one of the most difficult colors to see at night
 - Had no head protection, when all other emergency personnel at the scene did
 - Had no protective clothing, when other emergency personnel at the scene did???

Protective devices/concepts

- To prevent a crash
 - Driver feedback
 - Driver monitoring
 - Driver training
 - Vehicle ITS technologies
 - Tuned dynamics
 - Appropriate policies

- In the event of a crash
 - Vehicle crashworthiness
 - Seatbelt belt systems
 - Emergency brake systems
 - Padding
 - Head protection

Automotive Injury Triangle and Safety Development

<table>
<thead>
<tr>
<th>Host</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The "Black Box"

Driver behavior monitoring and feedback device

Purpose of ‘Black box’ Program

- Enhance Safety
- Improve Driver Performance
- Save Maintenance Dollars
- Aid Accident / Incident Investigation

Demonstrated Effectiveness

<table>
<thead>
<tr>
<th>Monitoring and feedback devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation well received by the providers.</td>
</tr>
<tr>
<td>20% cost saving in vehicle maintenance within 6 months.</td>
</tr>
<tr>
<td>No increase in response times</td>
</tr>
<tr>
<td>Fewer crashes and less severe crashes</td>
</tr>
<tr>
<td>Sustained improvement in safety proxies, with no inservice or retraining after the initial introduction period.</td>
</tr>
</tbody>
</table>

Dynamic Safety Testing

- requires sophisticated, expensive equipment
- measurably demonstrates forces generated during collision
- accepted international standard for vehicle restraint systems
If we know this – and its published....

Why do we do this?

Full Vehicle Crash Tests - 2000

Test 1 - Right side impact

Test 2 - Frontal

Air EMS is a role model for safety initiatives and focus

What Z15 encompasses

- Safety Program
- Safety Policy
- Responsibilities and Accountabilities
- Driver Recruitment, Selection and Assessment
- Organizational Safety Rules
- Orientation and Training
- Reporting Rates and Major Incidents to Executives
- Oversight

Johns Hopkins University Test 1 – Right side impact

1 – Target vehicle, Type I ambulance

2 – Bullet vehicle, Type II ambulance

Closing speed 44 mph

Johns Hopkins University Test 2 – Frontal

1 – Bullet vehicle, Type III ambulance

2 – Target vehicle, Type II ambulance

Closing speed 34 mph

Safe Practices for Fleet Motor Vehicle Operations

What Z15 encompasses

- Safety Program
- Safety Policy
- Responsibilities and Accountabilities
- Driver Recruitment, Selection and Assessment
- Organizational Safety Rules
- Orientation and Training
- Reporting Rates and Major Incidents to Executives
- Oversight
Z15 Incident Rates

- Incident rate based on number of vehicles operated:
 \[\text{Incident rate} = \frac{\text{Number of incidents}}{\text{Number of vehicles}} \times 100 \]

- Incident rate based on vehicle mileage:
 \[\text{Incident rate} = \frac{\text{Number of incidents}}{\text{Vehicle mileage}} \times 1,000,000 \]

- Injury incident rate based on vehicle mileage:
 \[\text{Injury incident rate} = \frac{\text{Number of incidents with injury}}{\text{Vehicle mileage}} \times 1,000,000 \]

- Incident rates based on service activity:
 \[\text{Incidents per 10,000 transports} = \frac{\text{Number of incidents}}{10,000} \]

- Vehicle injury rates based on work hours:
 \[\text{Vehicle incidents per 200,000 hours} = \frac{\text{Number of incidents}}{200,000} \]

Safety Management

- A Safety Culture
- Protective Policies
- Protective Devices
 - In the event of a crash
 - To prevent a crash
- Continuous Education and Evaluation

EMS Risk/Hazards

- Predictable risks
- Predictable fatal injuries
- Serious occupational hazard
- Public safety hazards

Safety Enhancements Being Implemented

- EVOC
- Tiered dispatch
- Monitoring & Feedback devices
- Helmets
- Optimized ambulance vehicle design
- New Standards

Future

- Meaningful Goals
- New policies
- New practices
- New standards
- New vehicles
- New technologies

Important Principles

1. A culture of safety
2. Drive cautiously
3. Wear your belts & restrain all occupants
4. Secure all equipment
5. Integrate scientific data into your policies and procedures

- Unrestrained occupants and equipment are a potential injury risk to all occupants

Very Important Principle

Ambulance transport safety is part of a SYSTEM, the overall balance of risk involves the safety of all occupants and the public

Small changes can make a BIG DIFFERENCE

- PREPARE – TEACH – REACH – RESPOND
 - Look at your own safety record
 - Teach safety and hazard awareness
 - Reach out with safety information to all your EMS providers
 - Respond with the best safety practices

Predictable Preventable and NO ACCIDENT
Conclusion

- Major advances in EMS safety research, infrastructure and practice over the past 5 years
- New technologies for vehicle design, occupant PPE and equipment restraint and driver performance are now available
- Development of substantive EMS safety standards is a necessity and a reality
- Enhanced cross disciplinary collaboration in development of safety initiatives now exist
- EMS is still way behind the state of the art in vehicle safety and occupant protection

And….

- It is no longer acceptable for EMS to be functioning outside of automotive safety and PPE safety standards for prevention of and protection of EMS providers and the public from injury and death

Acknowledgements

- EMSC funding – Targeted Issues Grant, PED-SAFE-T
- The late Capt. Garry Criddle – ExNHTSA/EMSC
- George Gillespie & Michael Schultz – US Military NAWC
- Joe McIntire & Joe Liscina - USAARL
- Veridian/Calspan/CenTIR
- Ambulance Association of America
- The USA EMS community
- Bill Murphy - Ontario Ministry of Health
- Muttiah Ayyendla - Standards Australia
- Research assistants – Allison Better, Tony Tsai, Philip Lee, Puneet Gupta and Leo McFarland.