Ambulance vehicle crashworthiness and passive safety design: A comparative evaluation

Introduction
- Major differences in the oversight and design standards for ambulance safety and occupant protection in USA compared to Australia.
- Since 1999 Australia has had an Australian Standards Association (ASA) approved ambulance standard.
- USA has a specification (GSA KKK-F) and a 'standard' (AMD 2007) that address ambulance design – neither are from automotive standardizing bodies.

Some odd USA facts
- 97% of ambulance transports are routine.
- <3% are critical or life threatening.
- Ambulances are generally not built by the automotive industry.
- Rear occupant compartment high risk of serious injury and fatality.
- The most lethal commercial vehicle on the road.

Design and manufacturing approach - USA and Australia
- There is some variation within each country, however there are features more characteristic of ambulance design and manufacture specific to each country.
- Additionally the system of oversight and design standards and the development of those standards differ quite dramatically between the USA and Australia.

Ambulance Manufacture - USA
- Majority - after market rear occupant box (Type 1 & 3), built by non-automotive industry retrofitter, who also attaches the box to Original Equipment Manufacturer (OEM) chassis.
- Occupant safety aspects of such rear compartments are under the purview of that retrofitting industry.
- Some van type vehicles (Type 2) for which aftermarket manufacturers remove and replace roof with a roof extension not fitted by the OEM of the vehicle, nor has this fitment been crash tested.

Ambulance Manufacture - Australia
- In contrast to USA, the majority of ambulance vehicles are automotive industry built vans (Type 2 style) – without structural alteration by the aftermarket retrofitters.
- The standards involved are generated by standardizing bodies that address automotive and occupant protection standards in other settings.

Objective
- To evaluate the potential safety performance and occupant protection of an Australian and 4 USA prototype 'safety concept' ambulances based on accepted crashworthiness performance principles.

Methods
- This evaluation is a broad based engineering evaluation of basic and fundamental aspects of occupant protection, crashworthiness and safety design features.
- This methodology was based on a validated engineering study methodology previously performed on ambulance and other vehicles.
Methods

- 5 recently designed ambulance vehicles were identified and compared
- 4 from the USA and one from Australia
- Broad based evaluation of basic and fundamental aspects of crashworthiness
- Ambulance crashworthiness testing conducted by the authors and other agencies, and detailed information on the design and construction of the study vehicles

Ambulance Standards??

- Australia
 - ASA
 - USA
- KKK?
- AMD?
- FMVSS?

Australia & New Zealand
Ambulance restraint standard AS/NZS 4535:1999

- "Restraint systems shall apply to all equipment and people carried in an ambulance..."
- Dynamic Testing - 50th & 95th percentile manikins
- 24G in Forward and Rearward
- 10G in Transverse

KKK and AMD Specifications and Standards

- The KKK-F specifications and the AMD Standard, reference and default on many safety issues to the Federal Motor Vehicle Safety Standards (FMVSS)
- However the FMVSS sections have specific exemptions for ambulance vehicles
- FMVSS exemptions apply to any occupant or structure located 600mm behind the seating reference point of the driver of the ambulance vehicle
- The AMD standards, developed internally by the AMD, make numerous references to FMVSS compliance even though the FMVSS have specific exemptions for ambulance vehicles

USA Ambulances: FMVSS Exemption

- Specifications for the purchase of a Star of Life Ambulance
- Static Pull test
- 2200 Lbs. static stretcher test in longitudinal, lateral & vertical
- No dynamic test for vehicle, occupants or equipment
- No automotive test manikin
- Voluntary

USA Ambulance Manufacturing Division (AMD)

- No dynamic or impact test
- No automotive test manikin
- Mandates NO 'crumple zone'
- No impact tested anchorages for occupant restraint or equipment
- Internal, not independent

Unacceptable, and ridiculous current 2008 USA ambulance "safetying" practices !??

- Compared with -

Accepted automotive safety dynamic occupant testing
AMD – static ‘safety testing’

- Inconsistent with automotive safety principles – and specifies that a ‘successful test’ is:
 - No structural damage to any load bearing or supporting members, i.e., torn or broken material, broken welds, popped or sheared body rivets, bolts, and/or fasteners, shall be evident during the application of the force and after the release of the force.

Occupant protection……?? July 2007

KKK certified and FMVSS exempt…?

Patient and Provider occupant fatalities, June 2008…

the study vehicles

Study Vehicle – Australia (vehicle A)

- The Australian vehicle was a recent safety focused design retrofitted into an OEM vehicle
- Involved the automotive manufacturing and safety industry in its design and development – in addition to peer reviewed engineering and automotive safety literature
- There exists an automotive standard based on crash test principles to evaluate its safety

Study Vehicles - USA (vehicle B-E)

- USA vehicles self designated as “Safety Concept” ambulance vehicles by the manufacturer and purchasers
- No described or available technical literature or publications to support the effectiveness or performance of safety features or innovations
- Material that promoted the safety of the vehicles was primarily advertising material from the aftermarket retrofitter, or purchaser and general EMS magazines

Study Vehicles - USA (vehicles B-E)

- USA vehicles configured with an aftermarket box built outside of the automotive safety industry, attached to an automotive industry built chassis. For 3 a light truck was used and for one of the vehicles a heavy truck was used
- No evidence in peer reviewed technical literature demonstrate interior configurations and vehicle structures provide rear occupant protection and crashworthiness

Interior Vehicle A
Results Vehicles B-E
- Poor predicted crashworthiness for these aftermarket modified chassis and box design ambulance vehicles based on the
 - Assessed crashworthiness performance and occupant protection do not appear optimized for these vehicles.

Results Vehicles B-E
- Design failures of utilizing the non-crash tested occupant compartment aftermarket box construction design
 - Side facing seating positions with the use of hazardous four or five point harnesses for seated occupants
 - Comprehensive automotive and crashworthiness data identifying the serious hazards of this practice

Full Vehicle Crash Testing
- As in the preliminary study, concerns raised regarding the nature of the attachment of the 'box' to the chassis and the potential for the rigidity of this system to increase the transfer of energy to the rear compartment occupants.
 - This was clearly demonstrated in some recent real world crash data, in addition to the crash testing conducted by the authors.

USA Ambulance full vehicle crash test research data (SAE/ESV)
- Vehicle interior on impact

NIOSH Ambulance Occupant Safety Crash Testing (not peer reviewed/published)
- Impact Direction: 25 MPH /
Results

- Further systems failure in the design of the USA vehicles
- A seating design that included a configuration in the sole rear facing seating position that could be modified to provide a small restraint system for use for a child.

- Concerns for safety of a child in that design
 - Firstly, no lateral protection with serious head strike hazards in side or offset impact
 - Secondly, medical care hazards
 - Medical care access is not practical with a child seated in that manner, with their back against a wall
 - No safe way for an ambulance provider to provide medical care without putting both the child patient and the provider at risk
 - Thirdly, once a child was in that modified seating position, the provider would be forced to only other available seating positions, which were side facing

- Liberal use of netting in vehicles B, C, and E
 - Though no testing of the netting material or its performance under impact conditions, or its ability to mitigate injury, was referenced by any manufacturer
 - Real world reports suggest netting attachments pull out under impact, and provide limited if any protection
 - In studies conducted by the authors and others, concerns about the netting construction and anchorage, and potential serious head and neck hazards

- Exemptions from OEM safety performance standards identified as problematic by the NTSB, back in 1979 - “…there are no standards or specifications which assure that the total design and construction of ambulances as modified by the after-market installers are of sufficient structural strength and stability to withstand impact forces similar to requirements imposed on the original vehicle manufacturer... FMVSS protection was not extended to the patients or medical personnel occupying the body of the ambulance since it did not apply to the modifications made after the vehicle was sold by the manufacturer.”
 - Has been no remedy in the USA to address this to date

- In contrast there was extensive demonstration of systems safety design and effective occupant protective features in the non-USA vehicle, Vehicle A
 - This vehicle was built structurally by vehicle manufacturer OEM, and required to meet that manufacturers safety performance standards, with no aftermarket alterations to the vehicle structural design

- No market structural vehicle modifications that can potentially decrease OEM crashworthiness integrity
- Excellent examples of creative and innovative safety design in vehicle A
- Unlike vehicles B, C, D and E, no squad bench, no side facing seating positions and no four or five point harnesses in any such orientation

High speed crash, rollover - occupants (patient and medics) only minor scratches

Side facing seating and 4 point harness hazards
Results Vehicle A

- Only forward or rear facing seating, and design focused around minimum mobility of the EMT in the rear compartment.
- One feature was an equipment cabinet that could move from one EMT position to the other – minimizing the need for ambulating to access essential equipment.
- There was also no cabinetry in the potential head strike zones.

Discussion

- Whilst the science, practice and principles of automotive safety is a well advanced technical science and discipline, this study demonstrates a serious and substantive disconnect between what is known, well described and understood in the world of automotive safety technology and what appears to be occurring in the design and development of some ambulance vehicles, particularly in the USA.

Discussion

- Of increasing concern is that the USA general EMS association publications and magazines continue to publish “reviews” of these “Safety Concept” vehicles in non-technical EMS industry magazines, widely broadcast and distributed, yet absent of technical automotive safety engineering or crashworthiness input.

Discussion

- These EMS publications espouse a perception of safety innovation that has no credible basis in either the open automotive safety literature or worlds best practice vehicle crashworthiness standards.
- As a result of these EMS industry “review” articles - EMS personnel are now making design and purchase decisions which could be placing patients and EMS personnel at predictable risk of serious injury.

Discussion

- For those not trained in automotive safety engineering and crashworthiness, and in the absence of standards, it is difficult to process this situation.
- These USA “Safety Concept” vehicles are not vehicles that utilize state of the art occupant protection systems for the rear compartment and are not demonstrated to be crashworthy.
- As such, they should not be considered by fleet purchasers as model safety vehicles.

Discussion

- Features of ambulance design in 4 of 5 vehicles studied are potentially hazardous and not within the known principles and technical aspects of crashworthiness and automotive safety design, and demonstrated predictable serious crashworthiness and occupant protection hazards.
- Non-crashworthy rear compartment construction and potentially hazardous interior design features (ie. side facing squad bench and seat design, head strike zones, and inappropriate restraint systems).
- Interior layout was a key area for improvement as well as a clear focus on occupant human factors, and equipment location and anchors.

Conclusion

- Need for safety researchers, automotive and transportation engineers, emergency medical service providers and ambulance vehicle designers to recognize and apply these existing principles of automotive safety, systems engineering and occupant protection, particularly to ambulances manufactured in the USA.
- The failure to address the design of these USA vehicles based on accepted crashworthiness and occupant protection principles, published peer reviewed automotive safety literature and in isolation of the extensive global expertise in automotive safety and human factors, remains a serious concern.

Conclusion

- For those not trained in automotive safety engineering and crashworthiness, and in the absence of standards, it is difficult to process this situation.
- These USA “Safety Concept” vehicles are not vehicles that utilize state of the art occupant protection systems for the rear compartment and are not demonstrated to be crashworthy.
- As such, they should not be considered by fleet purchasers as model safety vehicles.

Conclusion

- Features of ambulance design in 4 of 5 vehicles studied are potentially hazardous and not within the known principles and technical aspects of crashworthiness and automotive safety design, and demonstrated predictable serious crashworthiness and occupant protection hazards.
- Non-crashworthy rear compartment construction and potentially hazardous interior design features (ie. side facing squad bench and seat design, head strike zones, and inappropriate restraint systems).
- Interior layout was a key area for improvement as well as a clear focus on occupant human factors, and equipment location and anchors.

Thank you!

Any Questions??

Paper available at SAE store
Electronic handout available online
http://www.objectivesafety.net

The EMS Safety Foundation
Intro and Logistics Webinars from December 11th 2007 & Jan 8th 2008
EMS Safety Foundation tab at www.objectivesafety.net