TRB EMS Subcommittee ANB10(5)

EMS Safety Summit 2012 Safety Systems, Strategies and Solutions

Bridging Ergonomics, Operational Task Analysis and Automotive Safety Gene Lukianov, CEO VRAD

Director, Automotive Safety Engineering EMS Safety Foundation

February 29th , 2012

ORTATION RESEARCH BOARD

Bridging Ergonomics Operational Task Analysis and Automotive Safety

Gene Lukianov

Bridging Ergonomics Operational Task Analysis and Automotive Safety

- Definitions
- Automotive Safety Technology
 - The Ambulance Challenge
 - Bridging the Gap
 - Opportunities

WIKIPEDIA The Free Encyclopedia

ERGONOMICS

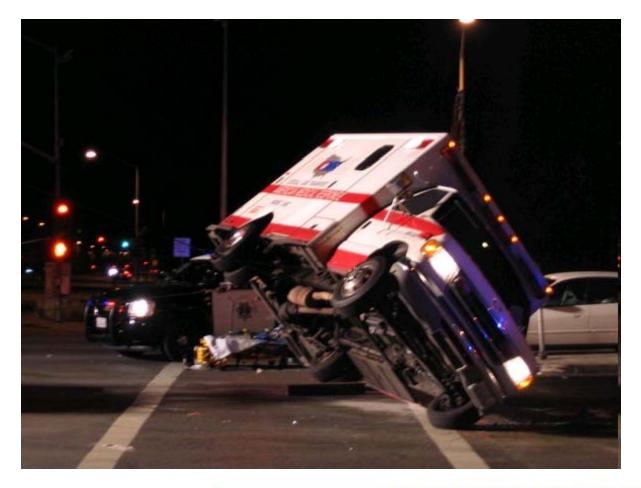
• **Ergonomics** is the study of designing equipment and devices that fit the human body, its movements, and its cognitive abilities.

The International Ergonomics Association defines ergonomics as follows:

- Ergonomics (or human factors) is the scientific discipline concerned with the understanding of interactions among humans and other elements of a system, and the profession that applies theory, principles, data and methods to design in order to optimize human well-being and overall system performance.
- Ergonomics is employed to fulfill the two goals of health and productivity
- It is relevant in the design of such things as safe furniture and easy-to-use interfaces to machines and equipment. Proper ergonomic design is necessary to prevent repetitive strain injuries, which can develop over time and can lead to long-term disability.

AUTOMOTIVE SAFETY

"Active safety" is used to refer to technology assisting in the prevention of a crash


"Passive safety" refers to technology of the vehicle (primarily airbags, seatbelts and the physical structure of the vehicle) that help to protect occupants during a crash

ACTIVE SAFETY

AVOIDS THIS:

ACTIVE SAFETY PREVENTS THIS:

SAFETY TECHNOLOGY

Active Safety Technology

- ESC: Electronic Stability Control / Rollover Prevention
- Antiskid Brakes maintain control while braking
- Brake Assist Systems prevent or reduce the severity of collision.
- Adaptive cruise control maintain a safe distance from the vehicle in front
- Lane departure warning systems alert the driver of an unintended departure from the intended lane of travel
- Tire pressure monitoring systems
- Traction control systems restore traction if driven wheels begin to spin
- Infrared night vision systems
- Adaptive headlamps
- Reverse backup sensors, which alert drivers to difficult-to-see objects in their path when reversing
- Backup camera

Electronic Stability Control (ESC): Maintains vehicle control Advanced Head Restraints: Reduce potential head/neck injuries in crashes

Advanced Frontal Air Bags:

Protect in frontal crashes, shielding the driver's and front passenger's head, neck, and chest

> Lane Departure Warning (LDW): Monitors lane markings on the road and cautions driver of untintentional lane drift

Side Air Bags and Curtains:^V Protect in side crashes shielding a passenger's head, neck, chest, and pelvis

Safety Belt Load Limiter and Safety Belt Pretensioner: Absorb crash energy and tighten belts to restrain occupants

Precrash Safety Technology

- Seat Belt pre-Tensionser
- Automatic Braking

Forward Collision Warning (FCW): Detects vehicles ahead, cautioning drivers of impending collisions

SAFETY TECHNOLOGY

Passive Safety Technology

- Seatbelts
- Airbags
- Laminated windshields.
- Passenger Compartment Safety Cell
- Vehicle Crumple zones
- Side impact protection beams
- Collapsible steering columns
- Door Latch and Hinge Systems
- Pedestrian protection systems
- Impact Friendly Interior Surfaces
- Cargo Restraints

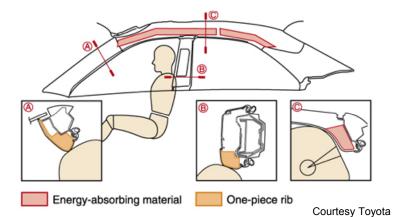
Advanced Head Restraints: Reduce potential head/neck injuries in crashes

Advanced Frontal Air Bags:

Protect in frontal crashes by shielding the driver's and front passenger's head, neck, and chest

Side Air Bags and Curtains: Protect in side crashes by shielding an occupant's head, neck, chest, and pelvis

Safety Belt Load Limiter and Safety Belt Pretensioner: Absorb crash energy and tighten belts to restrain occupants



DESIGN for SAFETY

Well Defined Occupant Positions Highly Refined Interior and Vehicle Design High Volume Manufacturing 50,000 – 200,000⁺ Vehicles High Capital Investment

Testing and Certification Processes

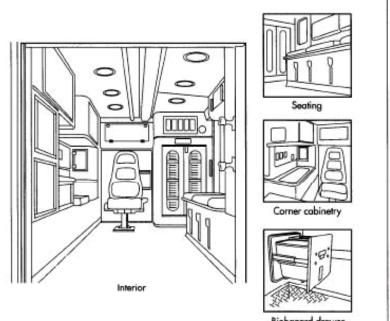
HEAD INJURY CRITERIA
$$HIC = \left[\frac{t_2}{(t_2 - t_1)} \int_{t_1}^{t_2} a dt\right]^{2.5} (t_2 - t_1)$$

The Ambulance Challenge

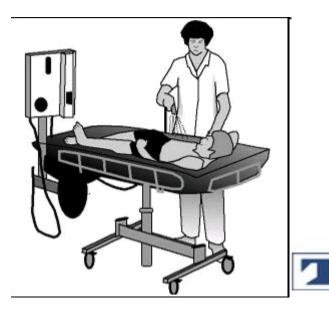
- Small Manufacturers
- Minimal Research Funding
- Working Environment
- High Stress Situations
- Many possible Tasks
- Equipment and Materials on Board

AMBULANCE DESIGN

Emergency Room on Wheels

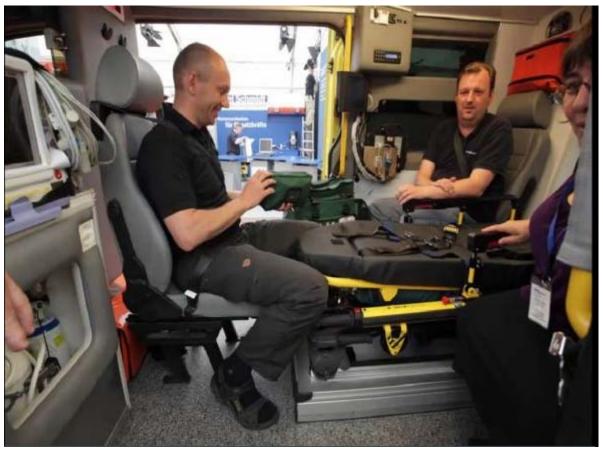

Large Variation of Medical Incidents

Large Variation in Occupants


Low Volume Manufacturing

50 - 500 vehicles

Low Capital Investment


Biohazard drawer

AMBULANCE DESIGN CHALLENGE

Seated and Restrained, But can you get the job done?

Courtesy of AmbulanceRanger

BRIDGING the GAP

BASIC PRINCILPES: ERGONOMICS

BASIC PRINCIPLES: AUTO SAFETY

Maintain Health (Safety) and Productivity

- Bio Metric Range of Customers
- Seated when traveling
- Task Analysis / Performance
 - Provide resources required
 - Appropriate reach / motion
 - Appropriate strength
 - Maintain task forces below injury levels
 - Repetitive events

Prevent Accidents, Minimize Consequences

- Bio Metric Range of Customers
- Seated when traveling
- Passive Safety
 - Restrain occupants in seats
 - Maintain seat integrity
 - Maintain passenger compartment
 Integrity
 - Minimize deceleration forces

 Provide crush zones
 - Provide friendly surfaces at impact zones
 - Maintain force levels below injury levels
 - Singular events

OPPORTUNITIES

Attendant / Patient / Gurney Relationship

- Operator Support Systems
- Interior and Equipment Storage Systems

Operating Factors

•Attendant and Patient/Gurney Relationship

Attendant may not be able to get close to patient

No room for attendant's legs below gurney

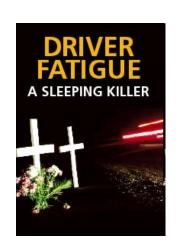
Attendant must face forward and work sideways

Attendant restraint may suffer

Operator Support Systems

Bio-Impact friendly hand grips

Interior and Storage Systems



Interiors designed for Ergonomics and Bio-Impacts

Operating Factors

- Operator Fatigue leads to Accidents
 - Work Rules allow long shifts

- "Lights and Siren" Attitude leads to Accidents
 - Philosophy, Training, Policy, Enforcement

QUESTIONS?

THANK YOU!

